Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.


翻译:医学图像分解要求从多个专家说明中得出协商一致的地面真相分解。提出了一种新颖的方法,即利用图形切分和半监督学习(SSL)从专家处获得协商一致的分解。通用的方法是利用迭代期望最大化(EM)来估计最终注解和量化说明员的性能。这些技术有被困在本地迷你中的危险。我们建议了一种自我一致性(SC)分数,用低水平的图像特征来量化注释的一致性。SSL用来通过考虑全球特征和当地图像的一致性来预测缺失的注释。SC分数还用作第二顺序的处罚成本。在Markov随机字段(MRF)分数中,利用图形切分优化了罚款功能,以获得最终的共识标签。图表切分在没有迭接程序的情况下获得了全球最高值。合成图像的实验结果、克罗恩病病人的真实数据以及视线图像显示我们的最后分数是准确的,比竞争性的方法更加一致。

11
下载
关闭预览

相关内容

马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,马尔可夫随机场是建立在马尔可夫模型和贝叶斯理论基础之上的,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员