Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: https://github.com/holgerroth/3Dunet_abdomen_cascade.


翻译:3D 完全革命网络(FCN) 的最新进展使得对体积图像进行密集的 Voxel 预测成为可行。 在这项工作中,我们显示,通过人工贴标签的对数个解剖结构(从大器官到瘦船只)进行CT扫描的多级 3D FCN 培训的多级 3D FCN 能够取得竞争性分解结果,同时避免需要手工艺特征或培训班级特有模型。 为此,我们提议了两阶段的粗到软体图解析方法,首先将3D FCN 用于大致定义候选区域,然后用作对第二个3D FCN 进行输入。这样可以减少第二个FCN 分类必须分类为~10%的 voxel CT 的人工CT CT CT 扫描, 并让它关注更详细的器官分解方法。 我们使用由331个临床临床图象构成的培训和验证系统, 测试我们在不同医院(包括150 CT 扫描 ) 以三个解剖器官为对象( 直径、 精度和直径D 级) 将用作第二 3D 3D 级的高级 图像解算算方法。 在目前的数据评算中,我们的数据中, 达到最高等级数据评分级中,我们的数据分级中,我们的数据分解为最高分解为: 我们的分解为标准, 我们的分解为标准, 我们的分级为: 我们的分算为直到最高级, 。

10
下载
关闭预览

相关内容

CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员