项目名称: 基于复合分位数回归和最大秩相关想法的ROC回归曲线估计

项目编号: No.11301031

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 段小刚

作者单位: 北京师范大学

项目金额: 22万元

中文摘要: 受试者操作特征(ROC)回归曲线广泛用于评估连续型诊断检验的分类精度。文献上常使用间接建模方法估计ROC回归曲线:首先对诊断检验结果关于协变量和疾病状态建立位置刻度模型,并通过拟似然或局部多项式回归估计模型参数;然后基于获得的拟合残差使用非参或核光滑方法估计目标ROC曲线。这类方法对模型随机误差分布有很强的依赖性,且对观测数据中的异常值特别敏感。本课题中,我们拟使用复合分位数及最大秩相关等技巧估计ROC回归曲线。我们分别考虑数据完全观测和含随机缺失两种情况。为便于使用上述方法,我们针对一类参数位置刻度模型提出一种新的模型描述方法。在新的模型描述框架下,目标ROC回归曲线形式更加简洁,且更便于理论上比较各种估计的渐近方差。考虑到ROC曲线估计表达式的复杂性,我们拟借助M-估计理论及经验过程知识证明估计量的渐近正态性。我们拟通过大量数值模拟及老年痴呆症方面的实际数据考察各类方法的有限样本表现。

中文关键词: 复合分位数回归;诊断精度;位置刻度模型;随机缺失;重参数化

英文摘要: The covariate-specific receiver operating characteristic curve or ROC regression is frequently used to evaluate the classification accuracy of a diagnostic test when it is associated with certain covariates. Indirect modeling of ROC regression is widely discussed in the literature. This method first builds a disease-specific regression model between test results and covariates as well as disease status, and estimates model parameters based on quasilikelihood method or local polynomial regression; then it estimates the targeted ROC curve based on nonparametric or kernel smoothing estimates of the disease-specific survival function using fitted residuals obtained previously. Considering the limitations of this method (e.g.: depending heavily on properties of the random errors, and is sensitive to outliers), we propose in this project a new series of methods for ROC regression based on the ideas of composite quantile regression and maximum rank correlation. We discuss these methods both in the absense or presence of missing data at random. These include missing test result, missing covariates, missing gold standard, or a mixture of them. To facilitate the use and comparison of different regression methods, we also propose a new formulation for a class of traditional location-scale model. Under the new framework,the

英文关键词: composite quantile regression;diagnostic accuracy;location scale model;missing at random;reparameterization

成为VIP会员查看完整内容
0

相关内容

【干货书】统计基础、推理与推断,361页pdf
专知会员服务
83+阅读 · 2022年1月25日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
21+阅读 · 2021年9月23日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
112+阅读 · 2021年3月23日
专知会员服务
139+阅读 · 2020年12月3日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
漫谈统计学习之经验贝叶斯(Empirical Bayes)
PaperWeekly
2+阅读 · 2022年3月23日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
数据分析师应该知道的16种回归方法:负二项回归
数萃大数据
74+阅读 · 2018年9月16日
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
数据分析师应该知道的16种回归技术:分位数回归
数萃大数据
29+阅读 · 2018年8月8日
[有意思的数学] 参数估计
机器学习和数学
15+阅读 · 2017年6月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
小贴士
相关主题
相关VIP内容
【干货书】统计基础、推理与推断,361页pdf
专知会员服务
83+阅读 · 2022年1月25日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
21+阅读 · 2021年9月23日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
112+阅读 · 2021年3月23日
专知会员服务
139+阅读 · 2020年12月3日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
相关资讯
漫谈统计学习之经验贝叶斯(Empirical Bayes)
PaperWeekly
2+阅读 · 2022年3月23日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
数据分析师应该知道的16种回归方法:负二项回归
数萃大数据
74+阅读 · 2018年9月16日
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
数据分析师应该知道的16种回归技术:分位数回归
数萃大数据
29+阅读 · 2018年8月8日
[有意思的数学] 参数估计
机器学习和数学
15+阅读 · 2017年6月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员