\textbf{Objective:} We aimed to develop an advanced multi-task large language model (LLM) framework to extract multiple types of information about dietary supplements (DS) from clinical records. \textbf{Methods:} We used four core DS information extraction tasks - namely, named entity recognition (NER: 2,949 clinical sentences), relation extraction (RE: 4,892 sentences), triple extraction (TE: 2,949 sentences), and usage classification (UC: 2,460 sentences) as our multitasks. We introduced a novel Retrieval-Augmented Multi-task Information Extraction (RAMIE) Framework, including: 1) employed instruction fine-tuning techniques with task-specific prompts, 2) trained LLMs for multiple tasks with improved storage efficiency and lower training costs, and 3) incorporated retrieval augmentation generation (RAG) techniques by retrieving similar examples from the training set. We compared RAMIE's performance to LLMs with instruction fine-tuning alone and conducted an ablation study to assess the contributions of multi-task learning and RAG to improved multitasking performance. \textbf{Results:} With the aid of the RAMIE framework, Llama2-13B achieved an F1 score of 87.39 (3.51\% improvement) on the NER task and demonstrated outstanding performance on the RE task with an F1 score of 93.74 (1.15\% improvement). For the TE task, Llama2-7B scored 79.45 (14.26\% improvement), and MedAlpaca-7B achieved the highest F1 score of 93.45 (0.94\% improvement) on the UC task. The ablation study revealed that while MTL increased efficiency with a slight trade-off in performance, RAG significantly boosted overall accuracy. \textbf{Conclusion:} This study presents a novel RAMIE framework that demonstrates substantial improvements in multi-task information extraction for DS-related data from clinical records. Our framework can potentially be applied to other domains.
翻译:暂无翻译