State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.


翻译:多任务学习(MTL)为多任务学习(MTL)带来很多好处,多任务学习(MTL)同时学习多种相关任务,以获得不同任务的共同或相互联系的表述。最广泛使用的MTLCN结构是基于在特定层(例如最后一个革命层)上的经验或超常分裂,以尽量减少不同任务的损失。然而,这种超自然共享/分裂战略可能有害于一项或多项任务的最后履行。在本文中,我们提议为MTL建立一个新型CNN结构,使每个层的自动特征都能够自动发挥。具体地说,我们首先根据频道的层面将不同任务中的特征混在一起,然后将特征发展成有区别的多元性减少。我们表明,通过1x1的演化、Batch正常化和Wight Decay可以实现这种歧视的维度的减少,我们称之为“神经分层差异特性减少” 。我们为MTL提供了一个新的CNN结构,它使得每个层都能够自动发挥功能。我们首先根据不同的任务按其频道的特性将特征结合分析,然后将这种特征发展成具有区别性的问题作为区别的多元性,我们网络中的拟议任务。我们进行了不同的实验。

15
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
实战 | 源码入门之Faster RCNN
计算机视觉life
19+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
Top
微信扫码咨询专知VIP会员