项目名称: Musielak-Orlicz-Sobolev 空间中的迹嵌入及其应用
项目编号: No.11501268
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 刘都超
作者单位: 兰州大学
项目金额: 18万元
中文摘要: 本项目研究 Musielak-Orlicz-Sobolev 空间中的迹嵌入定理及其应用,其中包括:内部迹嵌入定理、边界迹嵌入定理,以及在此基础上研究 Neumann 边值条件下强非线性椭圆方程解的存在性理论。Musielak-Orlicz-Sobolev 空间理论的研究来源于对强非线性椭圆算子方程的理论研究,在数学上研究的时间较短,许多基本问题尚未解决,是值得重视的 Sobolev 空间理论研究的新领域。本项目的研究将给出有价值的结论与研究方法,为强非线性偏微分方程理论的研究打下基础,推动非线性分析理论的发展。
中文关键词: Musielak-Orlicz-Sobolev;空间;边界迹嵌入;边值问题;多解;非平凡解
英文摘要: This project studies the trace imbeddings in the Musielak-Orlicz-Sobolev spaces and their applications, including the trace embedding in the inner plane, the trace embedding on the boundary, and based on the theory we will develop, the project studies the solution existence theories of the elliptic operator equations with strong non-linearities under the Neumann boundary conditions. The investigation on the Musielak-Orlicz-Sobolev spaces originated from the research in the nonlinear differential equations studied recently in mathematics. And many basic problems need solutions. It is worthy of attention in this new research field about the Sobolev space theory. The studies of this project can provide some valuable conclusions and research methods. The implementation of this project can play a research foundation role for the research of strong nonlinear operator partial differential equations, and push forward a new development in the nonlinear analysis theory.
英文关键词: Musielak-Orlicz-Sobolev Space;Boundary Trace embeddings;Boundary value problems;Multiple solutions;Non-trivial solutions