There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.


翻译:最近,人们对开发新的一类深层学习(DL)架构的兴趣激增,这种架构将明确的时间层面作为学习和代表机制的基本构件。而最近的许多结果则表明,观测数据的表层描述符,在不同尺度的表层空间对数据集形状的形状进行编码的信息,即数据的持久性同质性,可能包含重要的补充信息,提高DL的性能和稳健性。作为这两个新出现的想法的趋同,我们提议用数据中最有时间条件的最显著的表层信息来加强DL架构,并将zigzag持久性概念引入有时间意识的图表革命网络(GCNs)。Zigzag的持久性提供了一个系统和数学严格的框架,用以跟踪观测到数据中往往会随着时间的推移显现出来的最重要表层特征。为了将所提取的有时间条件的表层描述成一个新的表层摘要、zigzag的耐久性图像,并得出其理论稳定性保证。我们用一个具有时间特征的GCNs-CNS-stal-stal-stal-stal-stal-stall AS-stal-stal-stal-sal-stal-stal-stal-stal-stal-sleval-stal-stal-sleval-s-s-stal-s-stal-stal-stal-stal-stal-stal-stal-stal-st-st-stal-stal-stal-stal-s-s-stal-stal-stal-stal-s-s-s-stal-sal-st-st-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-x-s-s-s-x-x-x-x-x-s-

10
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【论文笔记】Graph U-Nets
专知
80+阅读 · 2019年11月25日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
5+阅读 · 2021年2月15日
已删除
Arxiv
32+阅读 · 2020年3月23日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【论文笔记】Graph U-Nets
专知
80+阅读 · 2019年11月25日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
5+阅读 · 2021年2月15日
已删除
Arxiv
32+阅读 · 2020年3月23日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Top
微信扫码咨询专知VIP会员