This paper presents a novel approach for achieving safe stochastic optimal control in networked multi-agent systems (MASs). The proposed method incorporates barrier states (BaSs) into the system dynamics to embed safety constraints. To accomplish this, the networked MAS is factorized into multiple subsystems, and each one is augmented with BaSs for the central agent. The optimal control law is obtained by solving the joint Hamilton-Jacobi-Bellman (HJB) equation on the augmented subsystem, which guarantees safety via the boundedness of the BaSs. The BaS-based optimal control technique yields safe control actions while maintaining optimality. The safe optimal control solution is approximated using path integrals. To validate the effectiveness of the proposed approach, numerical simulations are conducted on a cooperative UAV team in two different scenarios.
翻译:本文提出了一种新的方法,用于在网络多智能体系统(MASs)中实现安全随机最优控制。所提出的方法将阻碍状态(BaSs)纳入系统动态中以嵌入安全约束。为了实现这一点,网络 MAS 被分解为多个子系统,并且每个子系统都为中央智能体增加了 BaSs。通过在增广子系统上求解联合 Hamilton-Jacobi-Bellman(HJB)方程来获得最优控制律,从而保证通过 BaSs 的有界性来实现安全。基于 BaS 的最优控制技术可以在保持最优性的同时产生安全的控制动作。安全最优控制解决方案使用路径积分来近似计算。为了验证所提出方法的有效性,对合作 UAV 团队在两种不同情况下进行了数值模拟。