项目名称: 动态未知的异质非线性多智能体系统协调跟踪控制
项目编号: No.61304166
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 张宏伟
作者单位: 西南交通大学
项目金额: 26万元
中文摘要: 实际物理系统本质上均为非线性系统,且大多数情况下难以对其精确建模。因此,含有未知动态的非线性多智能体系统的协调跟踪控制是一个极其重要且具有挑战性的问题,开始引起学界的关注。针对此问题,本研究拟以一类典型的非线性系统为研究对象,采用神经网络自适应控制、非线性控制和鲁棒控制等相结合的技术,解决其全局跟踪和神经网络在线调整等问题。研究内容包括:(1) 智能体阶数相同但动态不同时的全局状态跟踪问题和输出跟踪问题;(2) 智能体阶数和动态均不同时的全局输出跟踪问题;(3) 智能体阶数相同但动态不同时,基于自组织神经网络的半全局状态跟踪问题。力争通过以上研究,将神经网络自适应控制技术拓展至多智能体系统,探寻基于有向通讯拓扑的多智能体系统的稳定性分析工具,为基于有向图的动态未知的非线性多智能体协调控制问题提供新的可行的解决方案。
中文关键词: 多智能体系统;非线性控制;协调跟踪;神经网络自适应控制;有向图
英文摘要: It is well known that all physical systems are inherently nonlinear, and it is often very hard to get the exact model of a nonlinear system. Therefore, it has been widely recognized as an important and challenging problem that seeking cooperative tracking of nonlinear multi-agent systems with unknown dynamics, which has been insufficiently investigated so far, with many problems still open. Our principle goal in this project is to incorporate neural adaptive control, nonlinear control and robust control techniques into solving the cooperative tracking problem of nonlinear multi-agent systems. In particularly, we aim to solve global cooperative tracking problem of a typical class of nonlinear multi-agent systems, i.e. in strict-feedback form, with non-identical agents, unknown dynamics, over fixed directed communication graphs; and solve the semi-global cooperative tracking problem with totally on-line neural network controllers. In the proposed research program, we will take a progressive approach and attempt to accomplish the following technical objectives: (1) To design distributed neural adaptive controllers, which solve the global cooperative tracking control of nonlinear multi-agent systems over directed graphs. Agents have different dynamics but with the same order, and their dynamics are not available for
英文关键词: multi-agent systems;nonlinear control;cooperative tracking;neural adaptive control;directed graph