项目名称: 随机非线性系统镇定、跟踪及采样控制
项目编号: No.61473082
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 自动化技术、计算机技术
项目作者: 翟军勇
作者单位: 东南大学
项目金额: 80万元
中文摘要: 随机现象普遍存在于实际系统中,它会对系统的性能产生影响,因此对随机系统的研究具有重要理论价值和实际意义。本项目将利用增加幂积分方法、压制法、连续域-离散化方法和Lyapunov稳定性理论,研究随机非线性系统若干控制问题。利用增加幂积分方法,根据随机有限时间Lyapunov稳定性定理,设计输出反馈控制器,使得系统的轨迹在有限时间内依概率收敛到平衡点。根据Dynkin公式和Lyapunov-Krasovskii稳定性定理,设计在Markov链转移率已知和未知两种情形下的输出反馈控制器,实现随机高阶Markov跳变非线性系统及其相应时滞系统的镇定和跟踪。在此基础上,利用连续域-离散化方法研究随机非线性系统采样控制问题,给出系统全局稳定的离散控制器设计方法和相应的最大允许采样周期。综上所述,本项目研究成果将不仅丰富和完善随机系统控制理论,而且也将为随机系统控制理论在数字计算机上的实现提供理论依据。
中文关键词: 随机非线性系统;非线性控制;随机时滞系统;采样控制
英文摘要: Random phenomena exist in realistic systems, which usually affect the performance of the systems, and therefore, it is of great significance to investigate the control problem for stochastic systems from both theoretical and practical point of view. Combining the adding one power integrator technique, domination approach, and the emulation method by discretizing continuous time controllers, with stochastic Lyapunov stability theory, this project aims to study a variety of control problems for stochastic nonlinear systems. By using the adding one power integrator technique and stochastic finite-time Lyapunov stability theorem, an output feedback controller is designed for stochastic nonlinear systems, under which the trajectories of the closed-loop system converge to the equilibrium point in a finite time in probability. Then, according to Dynkin formula and Lyapunov-Krasovskii stability theorem, we consider the problems of stabilization and tracking for stochastic high-order Markov jump nonlinear systems and the corresponding time-delay systems. Output feedback controller design schemes are presented under assumptions that the transition rates of Markov chain is known and unknown, respectively. On the basis of aforementioned works, we further investigate the sampled-data control problem for stochastic nonlinear systems by using the emulation method. By choosing appropriate maximum allowable sampling period (MASP), a sampled-data controller is constructed to guarantee that the system is globally stable in probability. Finally, the effectiveness of the control design schemes will be demonstrated by computer simulation results. In summary, the results of this project will not only enrich and improve stochastic systems control theory, but also provide theoretical basis for implementation on digital computers.
英文关键词: Stochastic nonlinear systems;nonlinear control;stochastic time-delay systems;sampled-data control