Safe human-robot collaboration (HRC) has recently gained a lot of interest with the emerging Industry 5.0 paradigm. Conventional robots are being replaced with more intelligent and flexible collaborative robots (cobots). Safe and efficient collaboration between cobots and humans largely relies on the cobot's comprehensive semantic understanding of the dynamic surrounding of industrial environments. Despite the importance of semantic understanding for such applications, 3D semantic segmentation of collaborative robot workspaces lacks sufficient research and dedicated datasets. The performance limitation caused by insufficient datasets is called 'data hunger' problem. To overcome this current limitation, this work develops a new dataset specifically designed for this use case, named "COVERED", which includes point-wise annotated point clouds of a robotic cell. Lastly, we also provide a benchmark of current state-of-the-art (SOTA) algorithm performance on the dataset and demonstrate a real-time semantic segmentation of a collaborative robot workspace using a multi-LiDAR system. The promising results from using the trained Deep Networks on a real-time dynamically changing situation shows that we are on the right track. Our perception pipeline achieves 20Hz throughput with a prediction point accuracy of $>$96\% and $>$92\% mean intersection over union (mIOU) while maintaining an 8Hz throughput.
翻译:最近,随着Industry 5.0范式的出现,安全的人机协作(HRC)引起了很多关注。传统机器人正在被更智能、更灵活的协作机器人(cobots)所取代。cobots与人之间的安全和高效协作在很大程度上取决于cobots对工业环境动态周围的全面语义理解。尽管语义理解对这类应用非常重要,但协作机器人工作空间的3D语义分割缺乏足够的研究和专用数据集。由于数据不足造成的性能限制问题称为'数据饥饿'问题。为了克服目前的限制,本文开发了一个新的数据集COVERED,专门为这种用例设计,包括机器人单元的逐点注释点云。最后,我们还对数据集上当前最先进算法(SOTA)的性能进行了基准测试,并演示了使用多LiDAR系统对协作机器人工作空间进行实时语义分割的结果。在实时动态环境下使用经过训练的Deep Networks的有希望的结果表明我们正在走在正确的轨道上。我们的感知管道实现了20Hz的吞吐量,预测点的准确性$>$96%,$>$92%的平均交集联合(IOU)并保持8Hz的吞吐量。