Safe human-robot collaboration (HRC) has recently gained a lot of interest with the emerging Industry 5.0 paradigm. Conventional robots are being replaced with more intelligent and flexible collaborative robots (cobots). Safe and efficient collaboration between cobots and humans largely relies on the cobot's comprehensive semantic understanding of the dynamic surrounding of industrial environments. Despite the importance of semantic understanding for such applications, 3D semantic segmentation of collaborative robot workspaces lacks sufficient research and dedicated datasets. The performance limitation caused by insufficient datasets is called 'data hunger' problem. To overcome this current limitation, this work develops a new dataset specifically designed for this use case, named "COVERED", which includes point-wise annotated point clouds of a robotic cell. Lastly, we also provide a benchmark of current state-of-the-art (SOTA) algorithm performance on the dataset and demonstrate a real-time semantic segmentation of a collaborative robot workspace using a multi-LiDAR system. The promising results from using the trained Deep Networks on a real-time dynamically changing situation shows that we are on the right track. Our perception pipeline achieves 20Hz throughput with a prediction point accuracy of $>$96\% and $>$92\% mean intersection over union (mIOU) while maintaining an 8Hz throughput.


翻译:最近,随着Industry 5.0范式的出现,安全的人机协作(HRC)引起了很多关注。传统机器人正在被更智能、更灵活的协作机器人(cobots)所取代。cobots与人之间的安全和高效协作在很大程度上取决于cobots对工业环境动态周围的全面语义理解。尽管语义理解对这类应用非常重要,但协作机器人工作空间的3D语义分割缺乏足够的研究和专用数据集。由于数据不足造成的性能限制问题称为'数据饥饿'问题。为了克服目前的限制,本文开发了一个新的数据集COVERED,专门为这种用例设计,包括机器人单元的逐点注释点云。最后,我们还对数据集上当前最先进算法(SOTA)的性能进行了基准测试,并演示了使用多LiDAR系统对协作机器人工作空间进行实时语义分割的结果。在实时动态环境下使用经过训练的Deep Networks的有希望的结果表明我们正在走在正确的轨道上。我们的感知管道实现了20Hz的吞吐量,预测点的准确性$>$96%,$>$92%的平均交集联合(IOU)并保持8Hz的吞吐量。

0
下载
关闭预览

相关内容

【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
14+阅读 · 2022年4月14日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关资讯
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员