项目名称: 基于Split Bregman方法的全局凸快速图像分割模型的研究

项目编号: No.61301208

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 杨云云

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 图像分割是图像处理和计算机视图中的一项基本任务,它被广泛应用在图像分析、模式识别、物体检测和医学影像等方面。活动轮廓模型已发展成为最成功的图像分割方法之一。传统活动轮廓模型有一些比较好的实验结果,但也有各自的局限性。另外,非凸性是这些模型的一个共同缺点。非凸性不仅会影响分割结果的准确性,也会降低分割的速度或者效率。最近几年Split Bregman方法已被用于更有效地解决图像分割问题。本项目通过将全局凸分割方法的思想应用于传统活动轮廓模型,建立几个全局极小或凸的活动轮廓模型来保证分割结果的准确性与鲁棒性。新模型能量泛函的特殊结构使得可以应用Split Bregman方法快速极小化它,保证新模型可以更快速地分割图像。新模型相比原有模型的优越性主要体现在分割结果的准确性、算法收敛的快速性以及对噪声的鲁棒性等方面。本项目的研究在医学领域中断层扫描以及核磁共振图像分析与处理中具有广阔应用前景。

中文关键词: 图像分割;活动轮廓模型;Split Bregman方法;MR图像;全局凸分割方法

英文摘要: Image segmentation is a fundamental task in image processing and computer vision, and it is widely applied in image analysis, pattern recognition, object detection, and medical imaging. Active contour models have become one of the most successful methods for image segmentation. Although traditional active contour models can get good numerical and experimental results, they all have their own limitations. Besides, non-convexity is the common disadvantage of these models. Non-convexity can not only affect the accuracy of segmentation results, but also decrease the segmentation speed or efficiency. Recently, the Split Bregman method has been applied to solve image segmentation problems more efficiently. In this project, we will establish several globally convex active contour models to guarantee the accuracy and robustness of segmentation results by applying the idea of the globally convex segmentation method to traditional active contour models. The special structure of the proposed energy functionals guarantees that we can apply the Split Bregman method to fast minimize them, which ensures that the new models can segment images much more efficiently. Compared with original models, the main advantages of the new models are the accuracy of segmentation results, the efficiency of algorithms, the robustness to noise,

英文关键词: image segmentation;active contour model;Split Bregman method;MR images;globally convex segmentation method

成为VIP会员查看完整内容
1

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
10+阅读 · 2021年10月3日
专知会员服务
38+阅读 · 2021年3月29日
专知会员服务
31+阅读 · 2021年2月17日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
32+阅读 · 2020年12月25日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
【速览】TPAMI丨泛化边缘保持和结构保持图像平滑模型
中国图象图形学学会CSIG
1+阅读 · 2021年10月15日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
CVPR2019 | 文本检测算法综述
极市平台
34+阅读 · 2019年5月30日
低清视频也能快速转高清:超分辨率算法TecoGAN
机器之心
13+阅读 · 2019年4月16日
综述 | 近年来深度学习的重要研究成果(附PDF)
数据派THU
14+阅读 · 2018年8月15日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
专知会员服务
10+阅读 · 2021年10月3日
专知会员服务
38+阅读 · 2021年3月29日
专知会员服务
31+阅读 · 2021年2月17日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
32+阅读 · 2020年12月25日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
相关资讯
【速览】TPAMI丨泛化边缘保持和结构保持图像平滑模型
中国图象图形学学会CSIG
1+阅读 · 2021年10月15日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
CVPR2019 | 文本检测算法综述
极市平台
34+阅读 · 2019年5月30日
低清视频也能快速转高清:超分辨率算法TecoGAN
机器之心
13+阅读 · 2019年4月16日
综述 | 近年来深度学习的重要研究成果(附PDF)
数据派THU
14+阅读 · 2018年8月15日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员