This survey paper specially analyzed computer vision-based object detection challenges and solutions by different techniques. We mainly highlighted object detection by three different trending strategies, i.e., 1) domain adaptive deep learning-based approaches (discrepancy-based, Adversarial-based, Reconstruction-based, Hybrid). We examined general as well as tiny object detection-related challenges and offered solutions by historical and comparative analysis. In part 2) we mainly focused on tiny object detection techniques (multi-scale feature learning, Data augmentation, Training strategy (TS), Context-based detection, GAN-based detection). In part 3), To obtain knowledge-able findings, we discussed different object detection methods, i.e., convolutions and convolutional neural networks (CNN), pooling operations with trending types. Furthermore, we explained results with the help of some object detection algorithms, i.e., R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, which are generally considered the base bone of CV, CNN, and OD. We performed comparative analysis on different datasets such as MS-COCO, PASCAL VOC07,12, and ImageNet to analyze results and present findings. At the end, we showed future directions with existing challenges of the field. In the future, OD methods and models can be analyzed for real-time object detection, tracking strategies.
翻译:该调查文件专门分析了基于计算机的视觉物体探测挑战和不同技术的解决方案。我们主要着重介绍了通过三种不同的趋势战略,即1) 采用适应性的深层次学习方法(基于差异的、基于逆向的、基于重建的、混合的)对物体的探测方法;我们研究了与一般和小物体探测有关的挑战,并通过历史和比较分析提供了解决办法。在第2部分,我们主要侧重于小物体探测技术(多级特征学习、数据增强、培训战略(TS)、基于环境的探测、基于环境的探测、基于GAN的探测)。在第3部分,为获得可知识的发现,我们讨论了不同的物体探测方法,即共变和动态神经网络(CNN),以趋势类型集中各种行动。此外,我们在一些物体探测算法的帮助下,即R-CN、快速R-CNN、更快的R-CNN、YOLO和SSD,这些技术一般被视为CV、CNN和OD的基础骨架。我们进行了不同物体探测数据的比较分析,例如MSCO、C-CO、PASAL-ROM-O 和FA-OD-OD-OD-OD-OD-OD-OD-OD-OD-OD-OD-OD-OD-OD-OD-FSD-OD-OD-OD-SD-SD-SD-SM-SM-SD-SD-SD-SD-SM-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SM-S-SD-SD-SM-S-S-S-S-S-S-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SM-SM-SM-SM-SD-SD-SD-SM-S-SM-SM-F-F-SD-SM