机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

VIP内容

这本开放存取书主要关注机器人的安全控制。控制方案主要基于动态神经网络,它是深度强化学习的一个重要理论分支。为提高机器人系统的安全性能,控制策略包括模型不确定性机器人的自适应跟踪控制、不确定性环境的顺应性控制、动态工作空间的避障控制。这本书关于解决机器手臂安全控制的想法是在工业应用和实验室的研究讨论中构想出来的。这本书中的大部分材料来源于作者在期刊上发表的论文,如IEEE工业电子学报、神经计算等。

本书可以作为机器人系统和人工智能控制器的研究者和设计者的参考书,也可以作为高校本科高年级和研究生的参考书。

成为VIP会员查看完整内容
0
18

最新内容

We consider evacuation from a finite two-dimensional (2D) square grid field by a metamorphic robotic system (MRS). An MRS is composed of anonymous memoryless modules. Each module of an MRS executes an identical distributed algorithm and moves autonomously while keeping the connectivity of modules. Since the modules are memoryless, an MRS utilizes its shape to remember the progress of execution. The number of available shapes that an MRS can form depends on the number of modules, which is thus an important complexity measure for a behavior of an MRS. In this paper, we investigate the minimum number of modules required to solve the evacuation problem with several conditions. First, we consider a rectangular field surrounded by walls with at least one exit and show that two modules are necessary and sufficient for evacuation from any rectangular field if the modules are equipped with a global compass, which allows the modules to have a common sense of direction. Then, we focus on the case where modules do not have a global compass and show that four (resp. seven) modules are necessary and sufficient for restricted (resp. any) initial states of an MRS. We also show that two modules are sufficient in the special case where an MRS is on a wall in an initial configuration. Finally, we extend these results to another type of fields, that is, mazes.

0
0
下载
预览

最新论文

We consider evacuation from a finite two-dimensional (2D) square grid field by a metamorphic robotic system (MRS). An MRS is composed of anonymous memoryless modules. Each module of an MRS executes an identical distributed algorithm and moves autonomously while keeping the connectivity of modules. Since the modules are memoryless, an MRS utilizes its shape to remember the progress of execution. The number of available shapes that an MRS can form depends on the number of modules, which is thus an important complexity measure for a behavior of an MRS. In this paper, we investigate the minimum number of modules required to solve the evacuation problem with several conditions. First, we consider a rectangular field surrounded by walls with at least one exit and show that two modules are necessary and sufficient for evacuation from any rectangular field if the modules are equipped with a global compass, which allows the modules to have a common sense of direction. Then, we focus on the case where modules do not have a global compass and show that four (resp. seven) modules are necessary and sufficient for restricted (resp. any) initial states of an MRS. We also show that two modules are sufficient in the special case where an MRS is on a wall in an initial configuration. Finally, we extend these results to another type of fields, that is, mazes.

0
0
下载
预览
父主题
Top