This paper aims to demonstrate how the prevalent practice in the learned video compression community of averaging rate-distortion (RD) curves across a test video set can lead to misleading conclusions in evaluating codec performance. Through analytical analysis of a simple case and experimental results with two recent learned video codecs, we show how averaged RD curves can mislead comparative evaluation of different codecs, particularly when videos in a dataset have varying characteristics and operating ranges. We illustrate how a single video with distinct RD characteristics from the rest of the test set can disproportionately influence the average RD curve, potentially overshadowing a codec's superior performance across most individual sequences. Using two recent learned video codecs on the UVG dataset as a case study, we demonstrate computing performance metrics, such as the BD rate, from the average RD curve suggests conclusions that contradict those reached from calculating the average of per-sequence metrics. Hence, we argue that the learned video compression community should also report per-sequence RD curves and performance metrics for a test set should be computed from the average of per-sequence metrics, similar to the established practice in traditional video coding, to ensure fair and accurate codec comparisons.
翻译:暂无翻译