Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.
翻译:图像分割是许多图像理解系统的一个重要组成部分。 它的目的是以空间和感知一致的方式组合像素。 通常, 这些算法包含一系列参数, 控制生成的超分化程度。 仍然难以正确选择像人类一样的感知组合参数 。 在这项工作中, 我们利用不同参数选择产生的区块的多样性 。 我们扫描分解参数空间, 并生成图像分化假设( 从高超分解到分层以下) 。 这些参数被输入成本最小化框架, 产生最终分化, 选择部分:(1) 更好地描述图像的自然轮廓, (2) 在所有分解假设中更加稳定和持久。 我们比较我们的算法性能和最先进的算法, 表明我们可以取得更好的结果 。 我们还表明, 我们的框架对于选择产生最初一套假设的分解内核非常强大 。