This paper proposes a novel technique for the approximation of strong solutions $u \in C(\overline{\Omega}) \cap W^{2,n}_\mathrm{loc}(\Omega)$ to uniformly elliptic linear PDE of second order in nondivergence form with continuous leading coefficient in nonsmooth domains by finite element methods. These solutions satisfy the Alexandrov-Bakelman-Pucci (ABP) maximum principle, which provides an a~posteriori error control for $C^1$ conforming approximations. By minimizing this residual, we obtain an approximation to the solution $u$ in the $L^\infty$ norm. Although discontinuous functions do not satisfy the ABP maximum principle, this approach extends to nonconforming FEM as well thanks to well-established enrichment operators. Convergence of the proposed FEM is established for uniform mesh-refinements. The built-in a~posteriori error control (even for inexact solve) can be utilized in adaptive computations for the approximation of singular solutions, which performs superiorly in the numerical benchmarks in comparison to the uniform mesh-refining algorithm.
翻译:本文提出一种新型的近似强效解决方案近似技术, 即 $u $@ in C( overline ~Omega}) \ cap W ⁇ 2, n ⁇ mathrm{loc} (\ OMega)$, 以统一等离子线性线性PDE, 以非调整形式以非调整性形式以非移动域以有限元素方法持续领先系数为主。 这些解决方案符合 Alexandrov- Bakelman- Pucci( ABP) 最高原则, 该原则为 $C1 符合近似值的 $C1 提供了一种~ 其它错误控制。 通过最大限度地减少这一剩余值, 我们获得一个接近于 $L ⁇ infty$ 规范中解决方案的解决方案的近似值。 虽然 终止性功能不满足 ABP 最高原则, 但这个方法延伸至不匹配 FEM, 还要感谢建立完善的浓缩操作者。 拟议的 FEM 的 Convergence 是为了统一 mesh- refinment.