This paper proposes a novel technique for the approximation of strong solutions $u \in C(\overline{\Omega}) \cap W^{2,n}_\mathrm{loc}(\Omega)$ to uniformly elliptic linear PDE of second order in nondivergence form with continuous leading coefficient in nonsmooth domains by finite element methods. These solutions satisfy the Alexandrov-Bakelman-Pucci (ABP) maximum principle, which provides an a~posteriori error control for $C^1$ conforming approximations. By minimizing this residual, we obtain an approximation to the solution $u$ in the $L^\infty$ norm. Although discontinuous functions do not satisfy the ABP maximum principle, this approach extends to nonconforming FEM as well thanks to well-established enrichment operators. Convergence of the proposed FEM is established for uniform mesh-refinements. The built-in a~posteriori error control (even for inexact solve) can be utilized in adaptive computations for the approximation of singular solutions, which performs superiorly in the numerical benchmarks in comparison to the uniform mesh-refining algorithm.


翻译:本文提出一种新型的近似强效解决方案近似技术, 即 $u $@ in C( overline ~Omega}) \ cap W ⁇ 2, n ⁇ mathrm{loc} (\ OMega)$, 以统一等离子线性线性PDE, 以非调整形式以非调整性形式以非移动域以有限元素方法持续领先系数为主。 这些解决方案符合 Alexandrov- Bakelman- Pucci( ABP) 最高原则, 该原则为 $C1 符合近似值的 $C1 提供了一种~ 其它错误控制。 通过最大限度地减少这一剩余值, 我们获得一个接近于 $L ⁇ infty$ 规范中解决方案的解决方案的近似值。 虽然 终止性功能不满足 ABP 最高原则, 但这个方法延伸至不匹配 FEM, 还要感谢建立完善的浓缩操作者。 拟议的 FEM 的 Convergence 是为了统一 mesh- refinment.

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员