We focus on learning hidden dynamics from data using ODE-nets templated on implicit numerical initial value problem solvers. First, we perform Inverse Modified error analysis of the ODE-nets using unrolled implicit schemes for ease of interpretation. It is shown that training an ODE-net using an unrolled implicit scheme returns a close approximation of an Inverse Modified Differential Equation (IMDE). In addition, we establish a theoretical basis for hyper-parameter selection when training such ODE-nets, whereas current strategies usually treat numerical integration of ODE-nets as a black box. We thus formulate an adaptive algorithm which monitors the level of error and adapts the number of (unrolled) implicit solution iterations during the training process, so that the error of the unrolled approximation is less than the current learning loss. This helps accelerate training, while maintaining accuracy. Several numerical experiments are performed to demonstrate the advantages of the proposed algorithm compared to nonadaptive unrollings, and validate the theoretical analysis. We also note that this approach naturally allows for incorporating partially known physical terms in the equations, giving rise to what is termed ``gray box" identification.


翻译:本文主要关注使用基于隐式数值初值问题解算器的ODE-网路来学习数据的隐藏动力学。首先,我们使用展开的隐式解算方案对ODE-网路进行反向修改的误差分析,以便在易于解释且减少误差的前提下,训练出一个近似于反向修改微分方程组(IMDE)的ODE-网路。此外,我们建立了一个训练此类ODE-网路的超参数选择的理论基础,因为目前的策略通常将ODE-网路的数值积分视为一个黑箱。因此,我们制定了一个自适应算法,用以监测误差水平并调整(展开的)隐式解算器的迭代次数,使得展开近似的误差小于当前的训练损失。这可提高训练速度,并保持准确性。我们进行了几个数值实验以展示这种方法相对于非自适应展开的优势,并验证了理论分析。此外,我们还指出,该方法可以自然地将部分已知的物理项纳入方程中,从而产生所谓的“灰盒子”识别。

0
下载
关闭预览

相关内容

【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
43+阅读 · 2022年5月25日
专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
159+阅读 · 2020年1月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
43+阅读 · 2022年5月25日
专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
159+阅读 · 2020年1月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员