项目名称: 若干非线性物理模型的可积性和解的动力学理论研究
项目编号: No.11301349
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 于发军
作者单位: 沈阳师范大学
项目金额: 23万元
中文摘要: 玻色-爱因斯坦凝聚态(BEC)的动力学理论研究是当前国际研究的重要课题之一。本课题针对描述孤子动力学特性的重要多耦合、高维和变系数的复杂非线性波方程,研究其可积性、具有物理意义的解析解,并分析解丰富的动力学行为。具体内容为:1)发展Darboux变换方法,基于符号计算提出构建多耦合可积非线性模型Darboux变换的高效迭代求解算法,获得这些模型一类新颖的解-多畸形波解,进一步深入探索畸形波的传播特性和相互作用;构造分块矩阵形式的Lax对,研究多耦合可积非线性模型的双微分代数结构、Painlevé性质和无穷守恒律等问题。2)综合运用Darboux变换、相似变换和Hirota双线性等方法研究高维和耦合的Gross-Pitaevskii方程的求解难题,求得其零边界精确解及多孤子解;将精确解与数值模拟相互结合,探讨BEC中解的稳定性和物质波的动力学行为,为新的实验研究和应用提供强有力的理论依据。
中文关键词: 可积行;精确解;畸形波;稳定性分析;
英文摘要: The dynamic theory of Bose-Einstein condensates (BEC) is a hot topic in frontier science.The integrability, analytical solutions and dynamics of solutions for the multi-component,higher-dimensional and variable coefficient complex equations are discussed in this project, which describe the soliton dynamic properties of physics. The specific contents are as follows. 1) Developping the Darboux transformation,the symbolic computation on the Darboux iterative algorithms for constructing the solutions of multi-component nonlinear models are proposed. Then, the novel multi-rogue wave solutions of multi-component nonlinear models are derived. Moreover,we analyze the propagation characteristic and interaction of rogue waves. With the help of the block matrix form Lax pairs, the structure of bidifferential graded algebra,the Painlevé integrability and infinite conservation laws of multi-component nonlinear models are explored. 2) This suggests a corresponding study of the complex Gross-Pitaevskii (GP) equation,its highter-dimensional and multi-component equations.We use the Darboux transformation technique, similarity transformation and Hirota method,then we find a way to construct the highter-dimensional and multi-component GP equations of exact solutions and multisoliton solutions with zero boundary. Furthermore, we c
英文关键词: Integrability;Exact solution;Rogue wave;Stability analysis;