The framework of multi-agent learning explores the dynamics of how individual agent strategies evolve in response to the evolving strategies of other agents. Of particular interest is whether or not agent strategies converge to well known solution concepts such as Nash Equilibrium (NE). Most ``fixed order'' learning dynamics restrict an agent's underlying state to be its own strategy. In ``higher order'' learning, agent dynamics can include auxiliary states that can capture phenomena such as path dependencies. We introduce higher-order gradient play dynamics that resemble projected gradient ascent with auxiliary states. The dynamics are ``payoff based'' in that each agent's dynamics depend on its own evolving payoff. While these payoffs depend on the strategies of other agents in a game setting, agent dynamics do not depend explicitly on the nature of the game or the strategies of other agents. In this sense, dynamics are ``uncoupled'' since an agent's dynamics do not depend explicitly on the utility functions of other agents. We first show that for any specific game with an isolated completely mixed-strategy NE, there exist higher-order gradient play dynamics that lead (locally) to that NE, both for the specific game and nearby games with perturbed utility functions. Conversely, we show that for any higher-order gradient play dynamics, there exists a game with a unique isolated completely mixed-strategy NE for which the dynamics do not lead to NE. These results build on prior work that showed that uncoupled fixed-order learning cannot lead to NE in certain instances, whereas higher-order variants can. Finally, we consider the mixed-strategy equilibrium associated with coordination games. While higher-order gradient play can converge to such equilibria, we show such dynamics must be inherently internally unstable.
翻译:----
高阶非耦合动力学不会引导到纳什均衡——除非出现特殊情况
Translated abstract:
本文探讨多智能体学习的框架,研究个体智能体策略随着其他智能体策略的演化而发生的动态变化,特别是关注智能体策略是否会收敛于著名的纳什均衡(NE)。在传统的固定阶段学习动力学中,个体智能体的状态通常被限定为其自身的策略。而在高阶学习中,动力学可以包括辅助状态,以捕捉路径依赖等现象。我们引入了高阶梯度博弈动力学,其类似于具有辅助状态的梯度上升。这些动力学是“基于收益”的,因为每个智能体的动力学都依赖于其自身不断变化的收益。尽管这些收益与游戏设置中其他智能体的策略相关,但个体动力学并不明确地依赖于游戏性质或其他智能体的策略。因此,在这种情况下,动力学是“非耦合的”,因为一个智能体的动力学不明确地依赖于其他智能体的效用函数。我们首先证明了:对于任何具体的游戏,只要存在一个隔离的完全混合策略纳什均衡,就存在高阶梯度博弈动力学可以导致这种均衡(局部),无论是对于具体的游戏,还是对于有扰动效用函数的相邻游戏。相反,我们证明,对于任何高阶梯度博弈动力学,都存在一个具有独特隔离的完全混合策略 NE 的游戏,但该动力学不能引导到NE。这些结果建立在以前的工作的基础上,该工作表明,在某些情况下,非耦合的固定阶段 学习不能导致NE,而高阶变种可以。最后,我们考虑与协调博弈相关的混合策略均衡。虽然高阶梯度博弈可以收敛于这些均衡,但我们显示这些动力学在内在上是不稳定的。