A Theory of Abstraction in Reinforcement Learning.

论文链接:https://david-abel.github.io/thesis.pdf

强化学习定义了学习仅通过行动和观察做出好的决策的智能体所面临的问题。要成为有效的问题解决者,这些智能体必须有效地探索广阔的世界,从延迟的反馈中获得 credit,并归纳出新的经验,同时利用有限的数据、计算资源和感知带宽。抽象(abstraction)对于所有这些努力都是必不可少的。通过抽象,智能体可以搭建起关于其环境的简洁模型,这些模型支持一个合理的、适应性强的决策者所需的许多实践。

在这篇论文中,作者提出了一个强化学习中的抽象理论。具体来说,他首先提供了实现抽象过程的函数的三个要求。它们应该:1)保持接近最佳行为的表示;2 该被有效地学习和构造;3)减少规划或学习时间。

接下来,他提出了一套新的算法和分析结果,阐明了智能体如何能够根据这些需求学习抽象。

总的来说,这些结果提供了发现和使用抽象的部分路径,最小化了有效强化学习的复杂性。

成为VIP会员查看完整内容
24

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
斯坦福大学最新【强化学习】2022课程,含ppt
专知会员服务
124+阅读 · 2022年2月27日
【布朗大学David Abel博士论文】强化学习抽象理论,297页pdf
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
层级强化学习概念简介
CreateAMind
17+阅读 · 2019年6月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
45+阅读 · 2009年12月31日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
45+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员