In this paper, physics-informed neural network (PINN) based on characteristic-based split (CBS) is proposed, which can be used to solve the time-dependent Navier-Stokes equations (N-S equations). In this method, The output parameters and corresponding losses are separated, so the weights between output parameters are not considered. Not all partial derivatives participate in gradient backpropagation, and the remaining terms will be reused.Therefore, compared with traditional PINN, this method is a rapid version. Here, labeled data, physical constraints and network outputs are regarded as priori information, and the residuals of the N-S equations are regarded as posteriori information. So this method can deal with both data-driven and data-free problems. As a result, it can solve the special form of compressible N-S equations -- -Shallow-Water equations, and incompressible N-S equations. As boundary conditions are known, this method only needs the flow field information at a certain time to restore the past and future flow field information. We solve the progress of a solitary wave onto a shelving beach and the dispersion of the hot water in the flow, which show this method's potential in the marine engineering. We also use incompressible equations with exact solutions to prove this method's correctness and universality. We find that PINN needs more strict boundary conditions to solve the N-S equation, because it has no computational boundary compared with the finite element method.
翻译:本文提出了一种基于基于特征的分裂算法(CBS)的物理知识注入的神经网络(PINN)方法,可用于求解时变的Navier-Stokes方程(N-S方程)。该方法将输出参数和相应的损失分离开来,因此不考虑输出参数之间的权重。并非所有偏导数都参与梯度反向传播,其余项将被重复使用。因此,与传统的PINN相比,该方法是一种快速版本。在此方法中,标记数据、物理约束和网络输出被视为先验信息,而N-S方程的残差被视为后验信息。因此,该方法可以处理既有数据驱动问题,又有数据无关问题。结果表明,它可以解决压缩型N-S方程的特殊形式——浅水方程和不可压缩N-S方程。由于边界条件已知,因此该方法仅需要在某个时间点上的流场信息即可恢复过去和未来的流场信息。我们解决了一个孤立波进入悬崖海滩的过程和热水在流动中的扩散,证明了该方法在海洋工程领域的潜力。我们还使用具有精确解的不可压缩方程来证明该方法的正确性和普适性。我们发现,与有限元方法相比,PINN需要更严格的边界条件来解决N-S方程,因为它没有计算边界。