项目名称: 可压缩Navier-Stokes方程组及相关模型解的整体适定性研究
项目编号: No.11501199
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 黄兰
作者单位: 华北水利水电大学
项目金额: 18万元
中文摘要: 本项目旨在对物理、力学、材料科学等自然学科领域出现的一类比较重要的Navier-Stokes方程组及相关模型解的整体适定性进行研究。主要研究以下问题:(1)粘性系数依赖于温度和密度的非等熵Navier-Stokes方程组真空问题解的整体适定性;(2)次相对论模型下和纯散射情形下可压缩辐射流体问题解的整体适定性;(3)可压缩微极流体解的整体存在性,正则性以及指数稳定性。这些问题在国际上比较受关注,也是比较新的研究方向。我们将运用一些新的方法、技巧和工具去克服物理模型在数学处理上存在的一些困难,研究在适当初值条件下Navier-Stokes方程组及相关模型解的整体存在性、正则性以及指数稳定性等问题。
中文关键词: Navier-Stokes;方程组;整体适定性;辐射流体;微极流体;正则性
英文摘要: The project is concerned with the global well-posedness of Navier-Stokes equations and related models, which is the most important equations in the field of physics,mechanics, material science and so on. We study the following problems: (1) The global well-posedness of Navier-Stokes with temperature-dependent viscosity with vacuum;(2) The global well-posedness of the infrarelativistic model and the pure scatter case for compressible radiative fluid; (3) The global existence and regularity for compressible micropolar fluid. These problems have drawn the extensive attention from the worldwide mathematical society because of their importance and new research direction. By means of some approaches, techniques and tools, we shall overcome some mathematical difficulties of these physical models to study the global existence, regularity and exponential stability of weak solutions to the Navier-Stokes equations and related models under some resonable assumptions on the initial data.
英文关键词: Navier-Stokes equations;global well-posedness;radiative fluid;micropolar fluid;regularity