Recent research in the theory of overparametrized learning has sought to establish generalization guarantees in the interpolating regime. Such results have been established for a few common classes of methods, but so far not for ensemble methods. We devise an ensemble classification method that simultaneously interpolates the training data, and is consistent for a broad class of data distributions. To this end, we define the manifold-Hilbert kernel for data distributed on a Riemannian manifold. We prove that kernel smoothing regression using the manifold-Hilbert kernel is weakly consistent in the setting of Devroye et al. 1998. For the sphere, we show that the manifold-Hilbert kernel can be realized as a weighted random partition kernel, which arises as an infinite ensemble of partition-based classifiers.
翻译:最近对过度平衡学习理论的研究试图在内插制度中建立普遍化保障。这种结果已经为几种常见方法确定了,但迄今为止没有为混合方法确定。我们设计了一个混合分类方法,同时将培训数据相互调和,并且对于广泛的数据分布类别是一致的。为此,我们定义了在里曼尼多管上分布数据的多管-高管内核。我们证明,在Devroye等人(Devroye等人,1998年)的设置中,使用多管-Hilbert内核的内核平稳回归过程不太一致。关于这个领域,我们表明,多管-Hilbert内核可以作为一种加权随机分割内核实现,该内核作为基于分区的分类器的无限组合产生。