We present a new image scaling method both for downscaling and upscaling, running with any scale factor or desired size. The resized image is achieved by sampling a bivariate polynomial which globally interpolates the data at the new scale. The method's particularities lay in both the sampling model and the interpolation polynomial we use. Rather than classical uniform grids, we consider an unusual sampling system based on Chebyshev zeros of the first kind. Such optimal distribution of nodes permits to consider near--best interpolation polynomials defined by a filter of de la Vall\'ee Poussin type. The action ray of this filter provides an additional parameter that can be suitably regulated to improve the approximation. The method has been tested on a significant number of different image datasets. The results are evaluated in qualitative and quantitative terms and compared with other available competitive methods. The perceived quality of the resulting scaled images is such that important details are preserved, and the appearance of artifacts is low. Competitive quality measurement values, good visual quality, limited computational effort, and moderate memory demand make the method suitable for real-world applications.
翻译:我们提出了一个新的图像缩放缩放和升级方法, 使用任何比例系数或理想的大小来运行。 调整图像的大小是通过采样一个双轨多元体来实现的, 它在全球范围内将新比例的数据内插。 方法的特殊性存在于取样模型和我们使用的内插多元体中。 与古典的统一网格相比, 我们考虑的是基于第一种类型Chebyshev零位的不寻常的取样系统。 这种节点的最佳分布允许考虑由 la Vall\'ee Poussin 型过滤器定义的近乎最佳的内插多元体。 这个过滤器的动作射线提供了额外的参数, 可以适当地调节它来改进近似近。 方法已经在大量不同的图像数据集上进行了测试。 其结果用质量和数量术语来评估, 与其他现有的竞争性方法进行比较。 由此形成的缩放图像的感知质量是保存重要细节, 以及文物的外观低。 竞争性质量测量值、 良好的视觉质量、 有限的计算努力和中度的记忆要求为适合真实世界的方法。