Deep learning has had tremendous success at learning low-dimensional representations of high-dimensional data. This success would be impossible if there was no hidden low-dimensional structure in data of interest; this existence is posited by the manifold hypothesis, which states that the data lies on an unknown manifold of low intrinsic dimension. In this paper, we argue that this hypothesis does not properly capture the low-dimensional structure typically present in data. Assuming the data lies on a single manifold implies intrinsic dimension is identical across the entire data space, and does not allow for subregions of this space to have a different number of factors of variation. To address this deficiency, we put forth the union of manifolds hypothesis, which accommodates the existence of non-constant intrinsic dimensions. We empirically verify this hypothesis on commonly-used image datasets, finding that indeed, intrinsic dimension should be allowed to vary. We also show that classes with higher intrinsic dimensions are harder to classify, and how this insight can be used to improve classification accuracy. We then turn our attention to the impact of this hypothesis in the context of deep generative models (DGMs). Most current DGMs struggle to model datasets with several connected components and/or varying intrinsic dimensions. To tackle these shortcomings, we propose clustered DGMs, where we first cluster the data and then train a DGM on each cluster. We show that clustered DGMs can model multiple connected components with different intrinsic dimensions, and empirically outperform their non-clustered counterparts without increasing computational requirements.
翻译:深层学习在学习高维数据的低维表现方面取得了巨大的成功。 如果在相关数据中不存在隐蔽的低维结构, 就不可能取得这一成功。 如果在相关数据中不存在隐蔽的低维结构, 则这一成功是不可能的; 多重假设就证明了这一存在, 假设数据存在于一个未知的内在层面上, 而在本文中, 我们争辩说, 这一假设并不恰当地捕捉数据中通常存在的低维度结构。 假设数据存在于一个单一元层面上, 意味着整个数据空间的内在层面是相同的, 并且不允许这一空间的次区域有不同数量的变异因素。 为了解决这一缺陷, 我们提出了多重假设的结合, 其中包括存在非一致的内在层面。 我们用经验来核实这一假设, 通常使用的图像数据集包含着未知的方位, 发现确实应该允许内在层面存在差异。 我们还表明, 具有更高内在层面的班级更难以分类, 如何利用这种洞察力来提高分类准确性。 我们然后将注意力转向这一假设在深层基因化模型背景下的影响( DMM) 。 多数目前的 DGM 与模型不包含多个链接的模型要求, 和我们首先提出这些内部的变数组 。