项目名称: 几类含∞-Laplace算子的特征值问题的研究
项目编号: No.11501292
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 刘芳
作者单位: 南京理工大学
项目金额: 18万元
中文摘要: 本课题拟深入研究含∞-Laplace算子的特征值问题,重点研究Dirichlet外问题和Robin混合内问题。将应用泛函分析、几何测度论、偏微分方程的思想和方法,通过构造上、下解,建立比较原理、一致估计和紧性等得到特征值和特征函数的存在性。进一步研究上述几类问题的特征值和区域的依赖关系,刻画特征值的谱结构。∞-Laplace算子的特征值问题与绝对极小、tug-of-war密切相关,同时在最优传输、图像处理、弹性力学及物理等方面有广泛的应用,在过去十几年引起了广泛的关注,本课题的研究可以丰富退化、拟线性偏微分方程的理论,深入开展这一领域的研究非常有意义。
中文关键词: ∞-Laplace;特征值;特征函数;谱
英文摘要: This project mainly researches on the eigenvalue problems of infinity Laplace operator, especially the Dirichlet exterior problem and the Robin interior problems. With the help of the ideas and methods from functional analysis, geometric measure theory and PDEs, the existence of eigenvalues and eigenfunctions will be obtained by constructing super-solutions and lower-solutions, establishing the comparison principle and uniform estimates and other steps. And the dependence of the eigenvalue with respect to the domain will be studied, especially the structure of spectrum. The eigenvalue problem of infinity Laplace operator is closely related to the absolute minimizer and tug-of-war, and has been widely applied in the optimal transportation, image processing, elastic mechanics and physics etc. In the past ten years it has caused wide attention. This project will enrich the theory of degenerate and quasilinear PDEs. Therefore the research of this field is very meaningful.
英文关键词: ∞-Laplace;eigenvalue;eigenfunction;spectrum