项目名称: 奇异非自伴哈密顿算子谱的研究

项目编号: No.11271225

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 郑召文

作者单位: 曲阜师范大学

项目金额: 60万元

中文摘要: 哈密顿系统理论是现代数学中一个既有深刻理论又有广泛应用的研究领域, 对谱理论的研究是非线性研究领域的一个重要组成部分. 本项目将研究奇异非自伴哈密顿算子的谱理论:结合复系数哈密顿系统的点、圆分类方法, 建立复系数哈密顿算子的J-自伴扩张以及Friedrichs扩张的解析描述;通过定义合适的Hilbert空间, 建立具有转移条件的哈密顿算子的谱理论, 着重在特征值的分布,特征函数的振动性及特征函数系的完备性得到新成果;最小哈密顿算子的亏指数的判别, 包括极限点型(强极限点型)、极限圆型的判别;对于出现中间亏指数的情形, 将利用实参解构造分离边界条件, 给出自伴域的刻画, 并讨论实参解的个数与连续谱存在的关系;混和阶微分算子的谱问题以及Schr?dinger算子的谱问题等. 这些理论的建立和完善, 将在非线性边值问题、最优控制理论、奇异摄动理论、计算数学和量子力学等多门学科的研究中起重要作用.

中文关键词: 亏指数;自伴扩张;点谱;分数阶;不等式

英文摘要: The theory of Hamiltonian systems is one of the important fields in mordern mathematics with profund theories and wide applications. Research on spectral thoeries is an important portion of nonlinear sciences. In this project, we consider the following problems related to the spectrum of singular non-selfadjoint Hamiltonian operators: combining with the limit point-limit circle classification of Hamiltonian systems with complex coefficients, we will give the descriptions of the J-selfadjoint extension and Friedrichs extension of the minimal Hamiltonian operator; by defining suitable Hilbert space, we will give the spectral properties of Hamiltonian operator with transmission condition, we major in the distribution of eigen-values, oscillation of eigen-functions and the completeness of the system of eigen-functions; we will give new criteria for limit point case (strong limit point case)and limit circle case; for the intermidiate case, we will give the characterization of selfadjoint domain using the solutions with real-parameter, and discuss the realtion between the number of solutions with real-parameter and the existence of continuous spectrum; we will also investgate the spectra for mixed order matrix differential operators and Schr?dinger operators.These problems are the forlands of research in this fiel

英文关键词: deficiency index;selfadjoint extension;point spectrum;fractional order;inequality

成为VIP会员查看完整内容
0

相关内容

徐宗本院士:人工智能的10个重大数理基础问题
专知会员服务
106+阅读 · 2021年12月24日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
44+阅读 · 2021年5月24日
【2021新书】线性与矩阵代数导论,492页pdf阐述
专知会员服务
99+阅读 · 2021年5月24日
专知会员服务
112+阅读 · 2021年3月23日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
73+阅读 · 2020年12月7日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
定位理论5大坑,你踩过几个?
人人都是产品经理
1+阅读 · 2022年1月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
干货:复杂网络及其应用简介
数据猿
25+阅读 · 2018年12月21日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
17+阅读 · 2018年4月2日
小贴士
相关主题
相关VIP内容
徐宗本院士:人工智能的10个重大数理基础问题
专知会员服务
106+阅读 · 2021年12月24日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
44+阅读 · 2021年5月24日
【2021新书】线性与矩阵代数导论,492页pdf阐述
专知会员服务
99+阅读 · 2021年5月24日
专知会员服务
112+阅读 · 2021年3月23日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
73+阅读 · 2020年12月7日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
定位理论5大坑,你踩过几个?
人人都是产品经理
1+阅读 · 2022年1月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
干货:复杂网络及其应用简介
数据猿
25+阅读 · 2018年12月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员