In this work the L2-1$_\sigma$ method on general nonuniform meshes is studied for the subdiffusion equation. Under some constraints on the time step ratio $\rho_k$, for example $\rho_k\geq 0.475329$ for all $k\geq 2$, a crucial bilinear form associated with the L2-1$_\sigma$ fractional-derivative operator is proved to be positive semidefinite and the $H^1$-stability of L2-1$_\sigma$ schemes is then derived for all time under simple assumptions on the initial condition and the source term. In addition, we prove the sharp convergence when $\rho_k\geq 0.475329$, which reduces the restriction $\rho_k\geq 4/7$ proposed by Liao, McLean and Zhang in [SIAM J. Numer. Anal. 57 (2019), no. 1, 218-237].
翻译:在这项工作中,对一般非统一色素的L2-1$gma$方法进行了子扩散方程式的研究,在对时间档比率($rho_k\geq 0.475329美元)的一些限制下,例如,对于所有k=Geq 2美元,0.475329美元,所有时间档比率($rho_k\geq 0.475329美元)的某些限制下,与L2-1$ ⁇ gma$微粒发酵器相关的关键的双线形式被证明是正的半无限期,然后根据最初条件和来源术语的简单假设,所有时间都得出L2-1$gma$计划($H%1美元)的稳定性,此外,我们证明当美元(rho_kgeq 0.475329美元)减少Liao、McLean和Zhang在[SIAM J.Numer. Anaal. 57 (2019),第1,2118-237号]中提议的限制(美元)时,我们证明非常接近一致。