A computer-assisted proof is proposed for the Laplacian eigenvalue minimization problems over triangular domains under diameter constraints. The proof utilizes recently developed guaranteed computation methods for both eigenvalues and eigenfunctions of differential operators. The paper also provides an elementary and concise proof of the Hadamard shape derivative, which helps to validate the monotonicity of eigenvalue with respect to shape parameters. Besides the model homogeneous Dirichlet eigenvalue problem, the eigenvalue problem associated with a non-homogeneous Neumann boundary condition, which is related to the Crouzeix--Raviart interpolation error constant, is considered. The computer-assisted proof tells that among the triangles with the unit diameter, the equilateral triangle minimizes the first eigenvalue for each concerned eigenvalue problem.
翻译:在直径限制下,为三角域的Laplacian egenvalue最小化问题提出了一个计算机辅助证明。该证明使用了最近为不同操作员的eigenvalue和eigenform这两个功能最近开发的可靠计算方法。该证明还提供了哈达马德形状衍生物的基本和简明证明,这有助于验证与形状参数有关的eigenvality的单一性。除了模型同质二元价值问题外,与非同质Neumann边界条件相关的与Crouzix-Raviart 互译错误常值相关的二元价值问题也得到了考虑。计算机辅助证明表明,在具有单位直径的三角之间,等边三角体最大限度地减少了每个相关电子值问题的第一个egen值。