We investigate the combinatorics of max-pooling layers, which are functions that downsample input arrays by taking the maximum over shifted windows of input coordinates, and which are commonly used in convolutional neural networks. We obtain results on the number of linearity regions of these functions by equivalently counting the number of vertices of certain Minkowski sums of simplices. We characterize the faces of such polytopes and obtain generating functions and closed formulas for the number of vertices and facets in a 1D max-pooling layer depending on the size of the pooling windows and stride, and for the number of vertices in a special case of 2D max-pooling.
翻译:我们调查最大集合层的组合体,这些功能通过取用输入坐标最大翻转窗口来降低输入阵列的样数,这些功能在进化神经网络中通常使用。我们通过等量Minkowski某些微软体量的脊椎数量来计算这些功能的线性区域的数量,我们描述这些多顶面的面貌,并获得生成功能和封闭公式,以了解1D最大集合层的脊椎和侧面数量,这取决于集合窗口和峰值的大小,以及2D最大集合体的特殊情况中的脊椎数量。