We present the reduced basis method as a tool for developing emulators for equations with tunable parameters within the context of the nuclear many-body problem. The method uses a basis expansion informed by a set of solutions for a few values of the model parameters and then projects the equations over a well-chosen low-dimensional subspace. We connect some of the results in the eigenvector continuation literature to the formalism of reduced basis methods and show how these methods can be applied to a broad set of problems. As we illustrate, the possible success of the formalism on such problems can be diagnosed beforehand by a principal component analysis. We apply the reduced basis method to the one-dimensional Gross-Pitaevskii equation with a harmonic trapping potential and to nuclear density functional theory for $^{48}$Ca, achieving speed-ups of more than x150 in both cases when compared to traditional solvers. The outstanding performance of the approach, together with its straightforward implementation, show promise for its application to the emulation of computationally demanding calculations, including uncertainty quantification.
翻译:我们提出降低基数方法,作为在核多体问题的背景下开发具有金枪鱼可参数的等式模拟器的工具。该方法使用一套基于模型参数的若干值解决方案的扩大基数,然后对精选的低维子空间进行方程式的预测。我们将叶子继续文献中的一些结果与减少基数方法的形式主义联系起来,并表明这些方法如何适用于广泛的一系列问题。正如我们所说明的那样,对此类问题的形式主义可能的成功,可以通过主要组成部分分析事先加以诊断。我们对单维Gross-Pitaevskii方程式采用降低基数方法,该方程式具有协调捕捉潜力,对核密度功能理论也采用了降低基数方法,在两种情况下,相对于传统解算器而言,均实现超过x150的加速。该方法的出色表现及其直接实施,都表明它有望应用于计算要求的模拟计算,包括不确定性量化。