Method-of-lines discretizations are demanding test problems for stiff integration methods. However, for PDE problems with known analytic solution the presence of space discretization errors or the need to use codes to compute reference solutions may limit the validity of numerical test results. To overcome these drawbacks we present in this short note a simple test problem with boundary control, a situation where one-step methods may suffer from order reduction. We derive exact formulas for the solution of an optimal boundary control problem governed by a one dimensional discrete heat equation and an objective function that measures the distance of the final state from the target and the control costs. This analytical setting is used to compare the numerically observed convergence orders for selected implicit Runge-Kutta and Peer two-step methods of classical order four which are suitable for optimal control problems.
翻译:然而,对于已知分析解决办法的PDE问题,空间离散错误的存在或使用代码计算参考解决方案的必要性可能会限制数字测试结果的有效性。为了克服这些缺陷,我们在本简短的说明中提出了边界控制方面的简单测试问题,即一步骤方法可能因减少订单而受到影响。我们为解决由单维离散热方程式管辖的最佳边界控制问题得出了精确的公式,并得出了一个客观的功能,用以衡量最终状态与目标的距离和控制成本。这一分析设置用来比较某些隐含Runge-Kutta 和同侪经典四级的两步方法,这些方法适合于最佳控制问题。