This paper investigates the competitiveness of semi-implicit Runge-Kutta (RK) and spectral deferred correction (SDC) time-integration methods up to order six for incompressible Navier-Stokes problems in conjunction with a high-order discontinuous Galerkin method for space discretization. It is proposed to harness the implicit and explicit RK parts as a partitioned scheme, which provides a natural basis for the underlying projection scheme and yields a straight-forward approach for accommodating nonlinear viscosity. Numerical experiments on laminar flow, variable viscosity and transition to turbulence are carried out to assess accuracy, convergence and computational efficiency. Although the methods of order 3 or higher are susceptible to order reduction due to time-dependent boundary conditions, two third-order RK methods are identified that perform well in all test cases and clearly surpass all second-order schemes including the popular extrapolated backward difference method. The considered SDC methods are more accurate than the RK methods, but become competitive only for relative errors smaller than ca $10^{-5}$.
翻译:本文调查半隐性龙格-库塔(RK)和光谱延迟校正(SDC)的时间整合方法的竞争力,直到在空间分解方面采用高度不连续的Galerkin法的同时,将6个不可压缩的导航-斯托克问题排列为6个,并结合高度不连续的Galerkin法,将隐含和直露的RK部分作为一种分解办法加以利用,为基本预测方案提供自然基础,并产生一种迎合非线性粘度的直向前进方法。对岩浆流、可变粘度和向波动的过渡进行数字实验,以评估准确性、趋同性和计算效率。虽然由于取决于时间的边界条件,第3级或第3级以上的方法很容易要求减少,但发现两种三级的RK方法在所有试验案例中效果良好,明显超过所有二级办法,包括流行的外推后差法方法。所考虑的SDC方法比RK方法更准确,但只有在相对差小于10美元或5美元的情况下才具有竞争力。