In this study, we propose a unified, general framework for the direct discontinuous Galerkin methods. In the new framework, the antiderivative of the nonlinear diffusion matrix is not needed. This allows a simple definition of the numerical flux, which can be used for general diffusion equations with no further modification. We also present the nonlinear stability analyses of the new direct discontinuous Galerkin methods and perform several numerical experiments to evaluate their performance. The numerical tests show that the symmetric and the interface correction versions of the method achieve optimal convergence and are superior to the nonsymmetric version, which demonstrates optimal convergence only for problems with diagonal diffusion matrices but loses order for even degree polynomials with a non-diagonal diffusion matrix. Singular or blow-up solutions are also well captured with the new direct discontinuous Galerkin methods.
翻译:在本研究中,我们为直接不连续的Galerkin方法提出了一个统一的总体框架。 在新的框架中,不需要非线性扩散矩阵的抗降解性。 这样可以简单定义数字通量, 用于一般的传播方程式, 无需进一步修改。 我们还介绍了对新的不连续的Galerkin方法的非线性稳定性分析, 并进行了一些数字实验来评估其性能。 数字测试表明,该方法的对称和界面校正版本实现了最佳趋同, 并且优于非对称版本, 后者显示最佳趋同性版本仅针对二角扩散矩阵的问题, 但却失去了与非直径扩散方矩阵的等量性多义。 星形或爆炸性解决方案也与新的直接不连续的 Galerkin 方法非常相似。