项目名称: 非线性离散可积方程与离散Painlevé方程族的连续极限理论
项目编号: No.11301331
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 赵海琼
作者单位: 上海对外经贸大学
项目金额: 22万元
中文摘要: 本项目拟研究非线性离散可积方程和离散Painlevé方程族的连续极限理论。主要内容包括利用Darboux变换构造离散组合可积方程的各种精确解,并建立这些解与对应连续系统解的一一对应关系。研究与高阶谱问题相联系的离散可积方程(离散Sawada-Kotera方程,离散 Boussinesq 方程, 离散Kaup-Kupershmidt方程,离散多分量Schr?dinger 系统)的Lax对,无穷守恒率,哈密尔顿结构,对称,Darboux-B?cklund变换及精确解的连续极限理论。通过构造非均匀谱Volterra方程族,非均匀谱离散mKdV方程族,非均匀谱离散Boussinesq 方程族的连续极限理论,建立离散Painlevé (I, II, III)方程族与Painlevé (I, II, III)方程族之间的一一对应关系,进一步研究离散Painlevé方程及其族的各种性质的连续极限理论。
中文关键词: 连续极限理论;非线性离散可积方程;达布变换;;
英文摘要: The research project seeks to establish the continuous limits theory of the nonlinear discrete integrable equation and discrete Painlevé equation hierarchy. By using the Darboux transformation, we construct the new explicit solutions for the discrete combined integrable equation (discrete Gardner equation, discrete Hirota equation and discrete Maxwell-Bloch equation), and then investigate their continuous limits yield the corresponding results for the continuous equations. We also discuss the continuous limits theory of the Lax pairs,the infinite conservation laws,the symmetries, the Hamiltonian structures , the Darboux-B?cklund transformations and exact solutions for some discrete integrable equation associated with high-order spectral problems (discrete Sawada-Kotera equation,discrete Boussinesq equation, discrte Kaup-Kupershmidt equation) and discrete multi-component integrable systems (discrete multi-component Schr?dinger system and discrete multi-component mKdV system). With the help of the continuous limits theory of the non-isospectral discrete equation hierarchy (such as non-isospectral Volterra equation hierarchy, non-isospectral discrete mKdV equation hierarchy, non-isospectral discrete Boussinesq equation hierarchy), the one-to-one relations between discrete Painlevé equation hierarchy and Painlevé e
英文关键词: continuous limits theory;nonlinear discrete integrable equation;Darboux transformation;;