In this paper, we give an in-depth error analysis for surrogate models generated by a variant of the Sparse Identification of Nonlinear Dynamics (SINDy) method. We start with an overview of a variety of non-linear system identification techniques, namely, SINDy, weak-SINDy, and the occupation kernel method. Under the assumption that the dynamics are a finite linear combination of a set of basis functions, these methods establish a matrix equation to recover coefficients. We illuminate the structural similarities between these techniques and establish a projection property for the weak-SINDy technique. Following the overview, we analyze the error of surrogate models generated by a simplified version of weak-SINDy. In particular, under the assumption of boundedness of a composition operator given by the solution, we show that (i) the surrogate dynamics converges towards the true dynamics and (ii) the solution of the surrogate model is reasonably close to the true solution. Finally, as an application, we discuss the use of a combination of weak-SINDy surrogate modeling and proper orthogonal decomposition (POD) to build a surrogate model for partial differential equations (PDEs).
翻译:在本文中,我们对非线性动力学(SINDI)的变体产生的替代模型进行深入的错误分析。我们首先对各种非线性系统识别技术,即SINDIY、弱-SINDIY和占用内核法进行概述。假设这些动态是一组基础功能的有限线性组合,这些方法就回收系数建立一个矩阵等式。我们对这些技术之间的结构相似性进行说明,并为弱-SINDI技术建立预测属性。在概览之后,我们分析了由弱-SINDIy简化版本产生的替代模型的错误。特别是,根据解决方案给出的组合操作者受约束的假设,我们表明:(一) 代孕动力与真实的动态相融合,和(二) 代孕模型的解决方案与真正的解决方案相当。最后,我们讨论了如何使用弱-SINDI制代金模型和正确或正态解剖式模型(EPDG)的组合,以构建一个替代方程式(EPDG)的模型。