With the recent advance of deep learning, neural networks have been extensively used for the task of molecular generation. Many deep generators extract atomic relations from molecular graphs and ignore hierarchical information at both atom and molecule levels. In order to extract such hierarchical information, we propose a novel hyperbolic generative model. Our model contains three parts: first, a fully hyperbolic junction-tree encoder-decoder that embeds the hierarchical information of the molecules in the latent hyperbolic space; second, a latent generative adversarial network for generating the latent embeddings; third, a molecular generator that inherits the decoders from the first part and the latent generator from the second part. We evaluate our model on the ZINC dataset using the MOSES benchmarking platform and achieve competitive results, especially in metrics about structural similarity.
翻译:随着最近深层学习的进展,神经网络被广泛用于分子生成的任务。许多深层发电机从分子图中提取原子关系,并忽略原子和分子两级的等级信息。为了提取这种等级信息,我们提议了一个新的双曲线基因模型。我们的模型包含三个部分:第一,一个完全超曲线的交叉-树木编码解码器,将分子的等级信息嵌入潜伏的双曲线空间;第二,一个潜在基因对抗网络,以产生潜伏嵌入;第三,一个分子生成器,继承第一部分的解密器和第二部分的潜生成器。我们利用MOSES基准平台对ZINC数据集模型进行评估,并取得竞争结果,特别是在结构相似性衡量方面。