Understanding the mechanism of generative adversarial networks (GANs) helps us better use GANs for downstream applications. Existing efforts mainly target interpreting unconditional models, leaving it less explored how a conditional GAN learns to render images regarding various categories. This work fills in this gap by investigating how a class conditional generator unifies the synthesis of multiple classes. For this purpose, we dive into the widely used class-conditional batch normalization (CCBN), and observe that each feature channel is activated at varying degrees given different categorical embeddings. To describe such a phenomenon, we propose channel awareness, which quantitatively characterizes how a single channel contributes to the final synthesis. Extensive evaluations and analyses on the BigGAN model pre-trained on ImageNet reveal that only a subset of channels is primarily responsible for the generation of a particular category, similar categories (e.g., cat and dog) usually get related to some same channels, and some channels turn out to share information across all classes. For good measure, our algorithm enables several novel applications with conditional GANs. Concretely, we achieve (1) versatile image editing via simply altering a single channel and manage to (2) harmoniously hybridize two different classes. We further verify that the proposed channel awareness shows promising potential in (3) segmenting the synthesized image and (4) evaluating the category-wise synthesis performance.
翻译:现有努力主要针对无条件模型的解释,但较少探讨有条件的GAN模型是如何学会制作不同类别图像的。这项工作通过调查等级有条件的生成器如何统一多类合成的方法填补了这一空白。为此,我们潜入广泛使用的等级条件批量正常化(CCBN),并观察每个功能频道在不同程度上根据不同的明确嵌入情况启动。为了描述这种现象,我们提议了频道意识,从数量上描述单一频道如何促进最终合成。在图像网络上预先培训的BigGAN模型的广泛评价和分析显示,只有一组频道主要负责特定类别的生成,类似类别(例如猫和狗)通常与某些相同的渠道相关,有些渠道则在所有类别中共享信息。为了良好的衡量,我们的算法使若干新的应用能够以有条件的GANs进行。具体地说,我们通过仅仅改变一个频道来实现多功能化图像编辑。我们在图像网络上预先培训的BigGGAN模型的广泛评价和分析显示,只有一组频道主要负责生成一个特定类别,即类似类别(例如猫和狗)通常与某些类别相关渠道相关,有些渠道能够共享信息。为了良好的合成。