Many areas of science make extensive use of computer simulators that implicitly encode likelihood functions of complex systems. Classical statistical methods are poorly suited for these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and low-dimensional regimes. Although new machine learning methods, such as normalizing flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains an open question whether they produce confidence sets with correct conditional coverage for small sample sizes. This paper unifies classical statistics with modern machine learning to present (i) a practical procedure for the Neyman construction of confidence sets with finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional coverage over the entire parameter space. We refer to our framework as likelihood-free frequentist inference (LF2I). Any method that defines a test statistic, like the likelihood ratio, can leverage the LF2I machinery to create valid confidence sets and diagnostics without costly Monte Carlo samples at fixed parameter settings. We study the power of two test statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a breakdown of the sources of errors in LF2I confidence sets.
翻译:许多科学领域广泛使用计算机模拟器,这些模拟器隐含了复杂系统的概率功能。古典统计方法不适合这些所谓的无概率推断(LFI)设置,特别是在无空间和低维系统之外。尽管新的机器学习方法,如正常流动,使样本效率和LFI方法的能力发生了革命性的变化,但是,它们是否产生对小型样本规模具有正确条件覆盖的信任套件,对于小型样本规模来说,仍然是个未决问题。本文将传统统计数据与现代机器学习相结合,以展示:(一) 尼曼公司建立具有名义覆盖有限抽样保证的信任套件的实用程序,以及(二) 估计整个参数空间的有条件覆盖的诊断。我们称我们的框架是无概率常度推断(LF2I)。任何界定测试统计的方法,如可能性比率,都可以利用LF2I机制在固定参数环境中不使用昂贵的蒙特卡洛样本来创建有效的信任套件和诊断。我们研究了两种测试统计数据(ACORE和BFF)的力量,它们分别将空间源的概率差数功能与LF2的数值整合起来。我们的文件讨论了我们的文件。