In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.


翻译:在结构学习中,产出通常是用于监督信息的结构,以便取得良好的业绩。考虑到这些年来深层次学习模式的解释引起了广泛的注意,如果我们能够从深层学习模式中学习一个可解释的结构,那将是有益的。在本文中,我们把重点放在经常神经网络上,其内部机制仍然没有得到明确的理解。我们发现,Finite State Automaton(FSA)处理顺序数据时,其内部机制更易于解释,并且可以作为可解释的结构从区域网络网中学习。我们建议了两种方法,根据两种不同的组群方法从区域网中学习FSA。我们首先为人类提供FSA图形图解图解,以显示可解释性。从FSA的角度,我们然后分析RNN的性能如何受到大门数目的影响,以及数字隐藏状态转型背后的语义含义。我们的结果表明,具有简单门形结构,如Minmal Gated Unit(MGUGU)的RNNN更可取,而FSA的过渡导致具体的分类结果与人类可以理解的对应词有关。

19
下载
关闭预览

相关内容

《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
205+阅读 · 2020年2月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2019年11月14日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
205+阅读 · 2020年2月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2019年11月14日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
4+阅读 · 2017年11月14日
Top
微信扫码咨询专知VIP会员