Natural language processing can facilitate the analysis of a person's mental state from text they have written. Previous studies have developed models that can predict whether a person is experiencing a mental health condition from social media posts with high accuracy. Yet, these models cannot explain why the person is experiencing a particular mental state. In this work, we present a new method for explaining a person's mental state from text using Monte Carlo tree search (MCTS). Our MCTS algorithm employs trained classification models to guide the search for key phrases that explain the writer's mental state in a concise, interpretable manner. Furthermore, our algorithm can find both explanations that depend on the particular context of the text (e.g., a recent breakup) and those that are context-independent. Using a dataset of Reddit posts that exhibit stress, we demonstrate the ability of our MCTS algorithm to identify interpretable explanations for a person's feeling of stress in both a context-dependent and context-independent manner.
翻译:自然语言处理有助于从作者的文字中分析一个人的心理状态。 以前的研究已经开发出一些模型,可以预测一个人是否在社交媒体文章中出现心理健康状况。 然而,这些模型无法解释为什么这个人正在经历某种精神状态。 在这项工作中,我们提出了一个新方法,用蒙特卡洛树搜索( MCTS ) 来解释一个人的心理状态。我们的MCTS算法使用经过培训的分类模型来指导关键词的搜索,这些词能以简明、可解释的方式解释作者的精神状态。 此外,我们的算法可以找到取决于文本特定背景的解释(例如最近的分裂)和根据具体情况独立的解释。我们利用显示压力的Reddit 文章的数据集,展示了我们的 MCTS 算法能够以基于背景和不依赖背景的方式为人们的紧张感应力找到可解释的解释性解释的解释。