In this work we investigate the min-max-min robust optimization problem for binary problems with uncertain cost-vectors. The idea of the approach is to calculate a set of k feasible solutions which are worst-case optimal if in each possible scenario the best of the k solutions is implemented. It is known that the min-max-min robust problem can be solved efficiently if k is at least the dimension of the problem, while it is theoretically and computationally hard if k is small. While both cases are well studied in the literature nothing is known about the intermediate cases, i.e. k lies between one and the dimension of the problem. We approach this open question and provide an efficient algorithm which achieves problem-specific additive and multiplicative approximation guarantees for the cases where k is close to and where k is a fraction of the dimension. The derived bounds can be used to show that the min-max-min robust problem is solvable in oracle-polynomial time under certain conditions even if k is smaller than the dimension. We show that the derived approximation guarantees can be extended to the k-adaptability problem. As a consequence we can provide better bounds on the number of required second-stage policies to achieve a certain approximation guarantee for the exact two-stage robust problem. Additionally we can show that these bounds are also promising for recoverable robust optimization. Finally we incorporate our efficient approximation algorithm into a branch & bound method to solve the min-max-min problem for arbitrary values of k. The experiments show that the performance of the branch & bound method scales well with the number of solutions, confirming our theoretical insights. Thus we are able to solve instances where k is of intermediate size efficiently.


翻译:在这项工作中,我们调查了对成本-矢量不确定的二进制问题的微负负负负稳健优化问题。 方法的构想是计算一套k- 可行的解决方案,如果在每种可能的假设中执行最优的 k 解决方案,这些解决方案是最差的。 众所周知, 如果 k 至少是问题的层面, 最小负负负负稳健问题是可以有效解决的, 而如果 k 小, 则在理论上和计算上都是困难的。 虽然文献对这两个案例的研究并不十分清楚中间案例, 即 k 介于问题的一个和层面之间。 我们处理这个开放式问题, 提供一套高效的K 可行解决方案, 并为 k 接近问题和 k 是维度一小部分的案例中, 提供一种高效的折叠式匹配保证。 最终, 我们的极速递增策略可以更好地纳入我们这个阶段的系统, 从而显示我们快速递增成本- k 递增的尾数。 我们的直线度政策可以很好地在一定的尾部中, 显示我们精确的尾部的尾部, 能够显示我们恢复的尾部的尾部。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
0+阅读 · 2023年4月3日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员