Neural processes (NPs) have brought the representation power of parametric deep neural networks and the reliable uncertainty estimation of non-parametric Gaussian processes together. Although recent development of NPs has shown success in both regression and classification, how to adapt NPs to multimodal data has not be carefully studied. For the first time, we propose a new model of NP family for multimodal uncertainty estimation, namely Multimodal Neural Processes. In a holistic and principled way, we develop a dynamic context memory updated by the classification error, a multimodal Bayesian aggregation mechanism to aggregate multimodal representations, and a new attention mechanism for calibrated predictions. In extensive empirical evaluation, our method achieves the state-of-the-art multimodal uncertainty estimation performance, showing its appealing ability of being robust against noisy samples and reliable in out-of-domain detection.


翻译:神经过程(Neural Processes,NPs)将参数化深度神经网络的表示能力和非参数高斯过程的可靠不确定性估计结合起来。虽然最近NPs的发展在回归和分类方面取得了成功,但如何将NPs适应多模态数据尚未被认真研究。我们首次提出了一种新的NP家族模型,用于多模态不确定性估计,称为多模态神经过程。我们以全面和原则性的方式,开发了一个动态上下文内存,由分类误差更新,多模式贝叶斯聚合机制来聚合多模态表示,以及用于校准预测的新的注意机制。在广泛的经验评估中,我们的方法实现了最先进的多模态不确定性估计性能,表明它具有在嘈杂样本中的强健性和在域外检测中的可靠性的吸引力能力。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员