We study best-of-both-worlds guarantees for the fair division of indivisible items among agents with subadditive valuations. Our main result establishes the existence of a random allocation that is simultaneously ex-ante $\frac{1}{2}$-envy-free, ex-post $\frac{1}{2}$-EFX and ex-post EF1, for every instance with subadditive valuations. We achieve this result by a novel polynomial-time algorithm that randomizes the well-established envy cycles procedure in a way that provides ex-ante fairness. Notably, this is the first best-of-both-worlds fairness guarantee for subadditive valuations, even when considering only EF1 without EFX.
翻译:我们研究了对具有次加性赋值的代理进行不可分割物品公平分配的最佳保障。我们的主要结果证明了存在一种随机分配方式,对于具有次加性赋值的每个实例都同时是前期 $\frac{1}{2}$-无嫉妒、后期 $\frac{1}{2}$-EFX 和后期 EF1 公平的。我们通过一种新颖的多项式时间算法,对已建立的嫉妒循环程序进行随机化,以提供前期公平性。值得注意的是,即使仅考虑 EF1 而不考虑 EFX,这仍是针对次加性赋值的第一个最佳保障公平性保障。