This study addresses a class of linear mixed-integer programming (MIP) problems that involve uncertainty in the objective function coefficients. The coefficients are assumed to form a random vector, which probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. We prove that for a class of bi-affine loss functions the three-level problem admits a linear MIP reformulation. Furthermore, it turns out that in several important particular cases the three-level problem can be solved reasonably fast by leveraging the nominal MIP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MIP reformulation are explored numerically for several application domains.
翻译:本研究解决了一类线性混合整数规划(MIP)问题,在目标函数系数存在不确定性的情况下进行优化。系数被假设为随机向量,其概率分布只能通过有限的训练数据集观察到。与文献中大部分相关研究不同的是,我们还考虑了基础数据集的不确定性。数据不确定性用每个随机样本的一组线性约束描述,并且对于固定的数据实现,分布中的不确定性是使用以数据的经验分布为中心的第1型Wasserstein球定义的。总问题被形式化为三级分布鲁棒优化(DRO)问题。我们证明了对于一类仿二次损失函数,三级问题具有线性MIP改写。此外,事实证明,在几个重要的特定情况下,三级问题可以通过利用标称MIP问题合理快速地解决。最后,我们进行了计算实验,探究了我们的模型的外样本性能以及所提出的MIP改写的计算复杂度,在几个应用领域进行了数字研究。