Massive access has been challenging for the fifth generation (5G) and beyond since the abundance of devices causes communication overload to skyrocket. In an uplink massive access scenario, device traffic is sporadic in any given coherence time. Thus, channels across the antennas of each device exhibit correlation, which can be characterized by the row sparse channel matrix structure. In this work, we develop a bilinear generalized approximate message passing (BiGAMP) algorithm based on the row sparse channel matrix structure. This algorithm can jointly detect device activities, estimate channels, and detect signals in massive multiple-input multiple-output (MIMO) systems by alternating updates between channel matrices and signal matrices. The signal observation provides additional information for performance improvement compared to the existing algorithms. We further analyze state evolution (SE) to measure the performance of the proposed algorithm and characterize the convergence condition for SE. Moreover, we perform theoretical analysis on the error probability of device activity detection, the mean square error of channel estimation, and the symbol error rate of signal detection. The numerical results demonstrate the superiority of the proposed algorithm over the state-of-the-art methods in DADCE-SD, and the numerical results are relatively close to the theoretical analysis results.
翻译:大规模接入对于第五代(5G)及其后续技术来说一直是一个挑战,因为设备的大量使用导致通信负载激增。在上行大规模接入情况下,给定任何一次相干时间内设备流量是间歇性的。因此,每个设备天线之间的通道呈现出相关性,同时可以利用这种关联性来进行行稀疏通道矩阵结构的刻画。在本研究中,我们基于行稀疏通道矩阵结构,开发了一种基于双线性广义近似消息传递(BiGAMP)算法。该算法可以通过通道矩阵和信号矩阵之间的交替更新,实现大规模多输入多输出(MIMO)系统中的设备活动检测、信道估计和信号检测的联合操作。与现有算法相比,信号观测提供了额外的信息以提高性能。我们进一步分析了状态演化(SE)来衡量提出算法的性能,并对SE的收敛条件进行了特征化。此外,我们还对设备活动检测的错误概率、信道估计的均方误差和信号检测的符号误差率进行了理论分析。数值实验表明,与现有方法相比,所提出算法在DADCE-SD方面表现卓越,并且数值结果与理论分析结果相差无几。