项目名称: 图像压缩感知与图像加密融合算法研究
项目编号: No.61262084
项目类型: 地区科学基金项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 周南润
作者单位: 南昌大学
项目金额: 47万元
中文摘要: 本项目拟结合密码学和压缩感知的原理,从信息论的角度,研究并构建图像压缩感知与图像加密融合算法的信息论安全性模型。该模型将解决不同图像加密方案的安全性分析手段不统一的困难,将为图像加密系统的技术实现提供安全性判据。在信息论安全性模型的框架下,充分考虑信息安全和密码学层面的约束,利用密钥控制压缩感知中随机测量矩阵或/和稀疏基的产生,研究并设计具有信息论安全性的图像压缩感知与图像加密融合算法,利用相同的密钥生成相应的随机测量矩阵或/和稀疏基对图像进行解密和重建。这些算法将一次性同时实现对图像的压缩和加密,以期有效节约密钥消耗量和传输带宽,并克服现有图像加密方法对图像压缩程度不够、压缩与加密相对独立导致算法复杂甚至存在安全问题等缺陷,进一步完善图像加密系统的安全性和可用性。本项目的完成将为军事、金融等领域敏感图像的实时安全通信提供系列有效的算法,并将使图像压缩感知与图像加密融合研究取得突破性进展。
中文关键词: 压缩感知;混沌系统;分数余弦变换;图像压缩;图像加密
英文摘要: An information-theoretical security model for image compressive sensing and encryption will be studied and constructed by combining the principles of cryptography and compressive sensing. This universal model will resolve the problem that the security analysis methods for different image encryption schemes are quite different and will support a security criterion for the technical realiztion of image encryption systems. Under the framework of the universal model, a set of hybrid algorithms for image compressive sensing and encryption with information-theoretical security will be investigated and designed by controlling the generations of the random matrix or/and the sparse bases with keys. And the decrytion and recovery of the image will be accomplished with the the random matrix or/and the sparse bases generated by the same keys. These hybrid algorithms should simultanuously complete image compress and encrytion once to save key consumption and transmission bandwidth. These algorithms should also overcome the defects on lower compression ratio of existing image encrytion measures, higher algorithm complexity due to relative separation of compression and encryption, even security problems and further enhance the security and avalability of image cnryption systems. The completion of this proposal will support a s
英文关键词: Compressive sensing;Chaotic system;Fractional cosine transform;Image compression;Image encryption