We consider statistical inference problems under uncertain equality constraints, and provide asymptotically valid uncertainty estimates for inferred parameters. The proposed approach leverages the implicit function theorem and primal-dual optimality conditions for a particular problem class. The motivating application is multi-dimensional raking, where observations are adjusted to match marginals; for example, adjusting estimated deaths across race, county, and cause in order to match state all-race all-cause totals. We review raking from a convex optimization perspective, providing explicit primal-dual formulations, algorithms, and optimality conditions for a wide array of raking applications, which are then leveraged to obtain the uncertainty estimates. Empirical results show that the approach obtains, at the cost of a single solve, nearly the same uncertainty estimates as computationally intensive Monte Carlo techniques that pass thousands of observed and of marginal draws through the entire raking process.
翻译:暂无翻译