A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
翻译:一个社区展示了其成员的特点和联系,这些特征和联系不同于网络中其他社区的特点和联系。在网络分析中,检测社区具有重大意义。尽管采用了古典光谱集群和统计推断方法,但我们注意到近年来社区探测的深层学习技术有了显著发展,在处理高维网络数据方面具有优势。因此,学术界和从业人员都及时对社区通过深层次学习发现的最新进展进行全面审查。这一调查设计并提出了一个新的分类,涵盖最先进方法的不同类别,包括深神经网络的深层学习模型、深非负矩阵因子化和深度稀少的过滤。主要类别,即深神经网络,进一步分为共生网络、图示关注网络、配制性对抗网络和自动生成器。调查还总结了流行的基准数据集、模型评价指标以及用于处理实验环境的公开源实施。我们随后讨论了在不同领域进行社区探测的实际应用,并指出了执行设想。最后,我们通过提出这一快速深层次学习领域的富有挑战性的专题,概述了今后的方向。